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QUANTUM PROCESSOR BASED SYSTEMS
AND METHODS THAT MINIMIZE A
CONTINUOUS VARIABLE OBJECTIVE
FUNCTION

BACKGROUND
Field

The present systems and methods generally relate to use
of quantum processors, and particularly relate to the use of
quantum processors to minimize an objective function com-
prising non-binary variables.

Quantum Devices

Quantum devices are structures in which quantum
mechanical effects are observable. Quantum devices include
circuits in which current transport is dominated by quantum
mechanical effects. Such devices include spintronics, where
electronic spin is used as a resource, and superconducting
circuits. Both spin and superconductivity are quantum
mechanical phenomena. Quantum devices can be used for
measurement instruments, in computing machinery, and the
like.

Quantum Computation

Quantum computation and quantum information are
active areas of research and define classes of vendible
products. A quantum computer is a system that makes direct
use of quantum-mechanical phenomena, such as, superpo-
sition, tunneling, and entanglement, to perform operations
on data. The elements of a quantum computer are not binary
digits (bits) but typically are quantum binary digits or qubits.
Quantum computers hold the promise of providing expo-
nential speedup for certain classes of computation problems
like simulating quantum physics. Useful speedup may exist
for other classes of problems.

There are several types of quantum computers. An early
proposal from Feynman in 1981 included creating artificial
lattices of spins. More complicated proposals followed
including a quantum circuit model where logical gates are
applied to qubits in a time ordered fashion. In 2000 a model
of computing was introduced for solving satisfiability prob-
lems; based on the adiabatic theorem this model is called
adiabatic quantum computing. This model is believed useful
for solving hard optimization problems and potentially other
problems.

Adiabatic Quantum Computation

Adiabatic quantum computation typically involves evolv-
ing a system from a known initial Hamiltonian (the Ham-
iltonian being an operator whose eigenvalues are the
allowed energies of the system) to a final Hamiltonian by
gradually changing the Hamiltonian. A simple example of an
adiabatic evolution is a linear interpolation between initial
Hamiltonian and final Hamiltonian. An example is given by:

H=(1-s)H+sH,

where H, is the initial Hamiltonian, H,is the final Hamilto-
nian, H, is the evolution or instantaneous Hamiltonian, and
s is an evolution coefficient which controls the rate of
evolution. As the system evolves, the evolution coefficient s
goes from O to 1 such that at the beginning (i.e., s=0) the
evolution Hamiltonian H, is equal to the initial Hamiltonian
H, and at the end (i.e., s=1) the evolution Hamiltonian H, is
equal to the final Hamiltonian H, Before the evolution
begins, the system is typically initialized in a ground state of
the initial Hamiltonian H, and the goal is to evolve the
system in such a way that the system ends up in a ground
state of the final Hamiltonian H,at the end of the evolution.
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If the evolution is too fast, then the system can be excited to
a higher energy state, such as the first excited state. In the
present systems and methods, an “adiabatic” evolution is an
evolution that satisfies the adiabatic condition:

$I{11dH /ds10) 1=8g(s)

where § is the time derivative of s, g(s) is the difference in
energy between the ground state and first excited state of the
system (also referred to herein as the “gap size”) as a
function of s, and 0 is a coeflicient much less than 1.
Generally the initial Hamiltonian H, and the final Hamilto-
nian H, don’t commute. That is, [H,, H]=0.

The process of changing the Hamiltonian in adiabatic
quantum computing may be referred to as evolution. The
rate of change, for example the change in variable s,
sometimes referred to as an evolution or annealing schedule,
is slow enough that the system is always in the instantaneous
ground state of the evolution Hamiltonian during the evo-
Iution, and transitions at anti-crossings (i.e., when the gap
size is smallest) are avoided. The example of a linear
evolution schedule is given above. Other evolution sched-
ules are possible including non-linear, parametric, and the
like. Further details on adiabatic quantum computing sys-
tems, methods, and apparatus are described in, for example,
U.S. Pat. Nos. 7,135,701; and 7,418,283.

Quantum Annealing

Quantum annealing is a computation method that may be
used to find a low-energy state, typically preferably the
ground state, of a system. Similar in concept to classical
annealing, the method relies on the underlying principle that
natural systems tend towards lower energy states because
lower energy states are more stable. However, while clas-
sical annealing uses classical thermal fluctuations to guide a
system to a low-energy state and ideally its global energy
minimum, quantum annealing may use quantum effects,
such as quantum tunneling, to reach a global energy mini-
mum more accurately and/or more quickly than classical
annealing. It is known that the solution to a hard problem,
such as a combinatorial optimization problem, may be
encoded in the ground state of a system Hamiltonian (e.g.,
the Hamiltonian of an (sing spin glass) and therefore quan-
tum annealing may be used to find the solution to such a hard
problem. Adiabatic quantum computation, therefore, may be
considered a special case of quantum annealing for which
the system, ideally, begins and remains in its ground state
throughout an adiabatic evolution. Thus, those of skill in the
art will appreciate that quantum annealing systems and
methods may generally be implemented on an adiabatic
quantum computer, and vice versa with appropriate changes.
Throughout this specification and the appended claims, any
reference to quantum annealing is intended to encompass
adiabatic quantum computation unless the context requires
otherwise.

Quantum annealing uses quantum mechanics as a source
of disorder during the annealing process. The optimization
problem is encoded in a Hamiltonian H, and the algorithm
introduces quantum effects by adding a disordering Hamil-
tonian H, that does not commute with H,. An example case
is:

Hyo AOHp+BOHp,

where A(t) and B(t) are time dependent envelope functions.
For example, A(t) changes from a large value to substan-
tially zero during the evolution. The Hamiltonian H, may be
thought of as an evolution Hamiltonian similar to H,
described in the context of adiabatic quantum computation
above. The disorder is slowly removed by removing H,, (i.e.,
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reducing A(t)). The disorder may be added and then
removed. Thus, quantum annealing is similar to adiabatic
quantum computation in that the system starts with an initial
Hamiltonian and evolves through an evolution Hamiltonian
to a final “problem” Hamiltonian H, whose ground state
encodes a solution to the problem. If the evolution is slow
enough, the system will typically settle in the global mini-
mum (i.e., the exact solution), or in a local minimum close
in energy to the exact solution. The performance of the
computation may be assessed via the residual energy (dif-
ference from exact solution using the objective function)
versus evolution time. The computation time is the time
required to generate a residual energy below some accept-
able threshold value. In quantum annealing, H, may encode
an optimization problem and therefore H, may be diagonal
in the subspace of the qubits that encode the solution, but the
system does not necessarily stay in the ground state at all
times. The energy landscape of H, may be crafted so that its
global minimum is the answer to the problem to be solved,
and low-lying local minima are good approximations.

The changed in the evolution Hamiltonian in quantum
annealing may follow a defined schedule known as an
annealing schedule. Unlike adiabatic quantum computation
where the system begins and remains in its ground state
throughout the evolution, in quantum annealing the system
may not remain in its ground state throughout the entire
annealing schedule. As such, quantum annealing may be
implemented as a heuristic technique, where low-energy
states with energy near that of the ground state may provide
approximate solutions to the problem.

Quantum Processor

A quantum processor may take the form of a supercon-
ducting quantum processor. A superconducting quantum
processor may include a number of qubits and associated
local bias devices, for instance two or more superconducting
qubits. A superconducting quantum processor may also
employ coupling devices (i.e., “couplers™) providing com-
municative coupling between qubits. A qubit and a coupler
resemble each other but differ in physical parameters. One
difference is the parameter, 3. Consider an rf-SQUID, super-
conducting loop interrupted by Josephson junction, 3 is the
ratio of the inductance of a Josephson junctions in to the
geometrical inductance of the loop. A design with lower
values of {3, about 1, behaves more like a simple inductive
loop, a monostable device. A design with higher values is
more dominated by the Josephson junctions, and is more
likely to have bistable behavior. The parameter, f§ is defined
a 2nl.I/®,. That is, p is proportional to the product of
inductance and critical current. One can vary the inductance,
for example, a qubit is normally larger than its associated
coupler. The larger device has a larger inductance and thus
the qubit is often a bistable device and a coupler monostable.
Alternatively the critical current can be varied, or the
product of the critical current and inductance can be varied.
A qubit often will have more devices associated with it.
Further details and embodiments of exemplary quantum
processors that may be used in conjunction with the present
systems and methods are described in, for example, the
following US Patents and Patent Application Publications:
U.S. Pat. Nos. 7,533,068; 8,008,942; 2008-0176750 (now
U.S. Pat. No. 8,195,596); 2009-0121215 (now U.S. Pat. No.
8,190,548); and 2011-0022820 (now U.S. Pat. No. 8,421,
053).

The types of problems that may be solved by any par-
ticular embodiment of a quantum processor, as well as the
relative size and complexity of such problems, typically
depend on many factors. Two such factors may include the
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number of qubits in the quantum processor and the connec-
tivity (i.e., the availability of communicative couplings)
between the qubits in the quantum processor. Throughout
this specification, the term “connectivity” is used to describe
the maximum number of possible communicative coupling
paths that are physically available (e.g., whether active or
not) to communicably couple between individual qubits in a
quantum processor without the use of intervening qubits.
For example, a qubit with a connectivity of three is capable
of directly communicably coupling to up to three other
qubits without any intervening qubits. In other words, there
are direct communicative coupling paths available to three
other qubits, although in any particular application all or less
than all of those communicative coupling paths may be
employed. In a quantum processor employing coupling
devices between qubits, this would mean a qubit having a
connectivity of three is selectively communicably couple-
able to each of three other qubits via a respective one of three
coupling devices. Typically, the number of qubits in a
quantum processor limits the size of problems that may be
solved and the connectivity between the qubits in a quantum
processor limits the complexity of the problems that may be
solved.

Many techniques for using quantum annealing and/or
adiabatic quantum computation to solve computational
problems involve finding ways to directly map a represen-
tation of a problem to the quantum processor itself. For
example, US Patent Publication 2008-0052055 describes
solving a protein folding problem by first casting the protein
folding problem as an Ising spin glass problem and then
directly mapping the Ising spin glass problem to a quantum
processor, and US Patent Publication 2008-0260257 (now
U.S. Pat. No. 8,073,808) describes solving a computational
problem (e.g., an image-matching problem) by first casting
the problem as a quadratic unconstrained binary optimiza-
tion (“QUBO”) problem and then mapping the QUBO
problem directly to a quantum processor. In both cases, a
problem is solved by first casting the problem in a contrived
formulation (e.g., Ising spin glass, QUBO, etc.) because that
particular formulation maps directly to the particular
embodiment of the quantum processor being employed. In
other words, an intermediate formulation is used to re-cast
the original problem into a form that accommodates the
number of qubits and/or connectivity constraints in the
particular quantum processor and then the intermediate
formulation is directly mapped to the quantum processor.
This “direct mapping” approach is motivated, at least in part,
by limitations inherent in the architecture of the quantum
processor being employed. For example, a quantum proces-
sor that employs only pair-wise interactions between qubits
(i.e., a quantum processor employing coupling devices that
provide communicative coupling between respective pairs
of qubits but not, for example, between larger sets of qubits,
such as three or more qubits) is intrinsically well-suited to
solve problems having quadratic terms (e.g., QUBO prob-
lems) because quadratic terms in a problem map directly to
pair-wise interactions between qubits in the quantum pro-
Ccessor.

Quadratic Unconstrained Binary Optimization Problems

A quadratic unconstrained binary optimization (“QUBO”)
problem is a form of discrete optimization problem that
involves finding a set of N binary variables {xi} that
minimizes an objective function of the form:

N
Exy, ... ,ay)= Z Qixix;

i=j
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where Q is typically a real-valued upper triangular matrix
that is characteristic of the particular problem instance being
studied. QUBO problems arise in many different fields, for
example machine learning, pattern matching, economics and
finance, and statistical mechanics, to name a few.
Programming a Quantum Processor

A quantum processor may interact with a digital computer
and may be programmed and/or operated via instructions
sent from the digital computer. However, the way in which
the quantum processor is programmed, and how its opera-
tion is involved in an algorithm for solving a problem, may
depend on many factors. As described in PCT Patent Appli-
cation Serial No. PCT/US2012/045843 (now WIPO publi-
cation W0O/2013/006836) and in accordance with the present
systems and methods, a quantum processor may be pro-
grammed and operated to determine a solution to a compu-
tational problem via at least two approaches: a direct map-
ping approach and a sampling approach.

Direct Mapping Approach

A problem may comprise a number of variables, and using
the direct mapping approach to solve the problem, each
variable may be mapped to and/or represented by at least one
qubit in a quantum processor. The types of problems that
may be solved by this approach, as well as the relative size
and complexity of such problems, typically depend on many
factors. Two such factors may include the number of qubits
in the quantum processor and the connectivity between the
qubits in the quantum processor. Throughout this specifica-
tion, the term “connectivity” is used to describe the maxi-
mum number of possible communicative coupling paths that
are physically available (e.g., whether active or not) to
communicably couple between individual qubits in a quan-
tum processor without the use of intervening qubits. For
example, a qubit with a connectivity of three is capable of
communicably coupling to up to three other qubits without
any intervening qubits. In other words, there are communi-
cative paths directly available to three other qubits, while in
any particular application any number (i.e., 0, 1, 2, or 3) of
those communicative paths may be employed. In a quantum
processor employing coupling devices between qubits, this
would mean a qubit having a connectivity of three is
communicably directly coupleable to three other quits via
three respective coupling devices. Traditionally, the number
of qubits in a quantum processor limits the size of problems
that may be solved and the connectivity between the qubits
in a quantum processor limits the complexity of the prob-
lems that may be solved.

Examples of applications that employ the direct mapping
approach include: US Patent Publication 2008-0052055,
which describes solving a protein folding problem by first
casting the protein folding problem as an Ising spin glass
problem and then directly mapping the Ising spin glass
problem to a quantum processor; U.S. Pat. No. 8,073,808,
which describes solving a computational problem (e.g., an
image-matching problem) by first casting the problem as a
quadratic unconstrained binary optimization (“QUBO”)
problem and then mapping the QUBO problem directly to a
quantum processor; and US Patent Publication 2011-
0231462 (now U.S. Pat. No. 8,700,689), which describes
solving logic circuit representations of computational prob-
lems by mapping each individual logic gate to a respective
miniature optimization problem having an output that is
“optimized” if the truth table of the logic gate is satisfied. In
all of these examples, a problem is solved by first casting the
problem in a contrived formulation (e.g., Ising spin glass,
QUBO, etc.) because that particular formulation maps
directly to the particular embodiment of the quantum pro-
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6

cessor. In other words, an intermediate formulation is used
to re-cast the original problem into a form that accommo-
dates the number of qubits and/or connectivity constraints in
the particular quantum processor.

Techniques for performing direct mapping of a problem to
a quantum processor (e.g., techniques generating for gener-
ating an intermediate formulation, such as a QUBO prob-
lem) are described in at least the following U.S. Pat. Nos.
7,418,283; 7,135,701; 7,788,192; 7,533,068; 8,008,942,
7,984,012, 8,244,662, 8,190,548; 8,174,305; and 8,700,689,
each of which is incorporated herein by reference in its
entirety.

The “direct mapping” approach of re-casting a problem in
an intermediate formulation can work well for some prob-
lems but can also be impractical for other problems. For
example, casting a computational problem as a QUBO
problem requires casting the computational problem in a
form allowing only pair-wise interactions between qubits.
Any higher-order interactions need to be broken down into
pair-wise terms in order to be re-cast in QUBO form. Many
computational problems have higher-order (i.e., beyond
pair-wise) interactions between variables, and these prob-
lems can require significant pre-processing in order to be
re-cast in QUBO form. Furthermore, breaking down higher-
order interactions into pair-wise terms can force multiple
qubits to be used to represent the same variable, meaning the
size of the problem that can be solved is reduced. It is for at
least these reasons that the alternative “sampling approach”
to programming quantum processors has been developed.
Sampling Approach

The sampling approach to programming a quantum pro-
cessor is described in PCT Patent Application Serial No.
PCT/US2012/045843 (WIPO publication WO2013006836),
which is hereby incorporated by reference in its entirety.

In brief, the sampling approach to programming a quan-
tum processor involves using a digital computer to define an
objective function which takes, as input, a bit string (i.e., a
sequence of Os and 1s) and outputs a real number. The
quantum processor is called to provide a set of bit strings, or
“samples,” where each bit in the bit string corresponds to the
state of a respective qubit in the quantum processor after a
quantum computation is performed. The quality of each
sample is then assessed by plugging it into the objective
function on the digital computer to determine the corre-
sponding real number output. The quantum processor intrin-
sically provides samples from a probability distribution,
where the shape of the probability distribution depends on a
configuration of programmable parameters (i.e., the same
programmable parameters that are used to define a QUBO in
the direct mapping approach). High probability samples in
the quantum processor’s probability distribution may corre-
spond to low-energy states of the quantum processor. In
other words, the quantum processor may intrinsically tend to
provide samples from low-energy states (e.g., by performing
quantum annealing and/or adiabatic quantum computation).

The focus of the sampling approach to programming a
quantum processor is to make these low-energy states of the
quantum processor correspond to bit strings that produce
desirable real number outputs in the objective function. This
may be achieved by shaping the probability distribution of
the quantum processor so that high-probability samples
(e.g., low-energy states) correspond to bit strings that pro-
duce desirable real number outputs from the objective
function. Thus, after the first samples from the quantum
processor are assessed by determining their corresponding
real number outputs, the programmable parameters of the
quantum processor may be adjusted to re-shape the prob-
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ability distribution of the quantum processor and increase
the probability of producing desirable real number outputs
and/or increase the desirability of at least some of the real
number outputs produced.

Compared to the direct mapping approach, the sampling
approach to programming a quantum processor is less
dependent on the architecture of the processor itself and may
enable a broader range of problems to be solved. In many
applications, it can also be considerably more straightfor-
ward to program a quantum processor via the sampling
approach than via the direct mapping approach.

BRIEF SUMMARY

Methods of formulating a problem comprising continuous
variables into discrete variables that facilitate determining a
solution via a quantum processor are described. Systems that
perform the methods are also described.

A method of operation of a computational solver system
to solve a continuous variable problem may be summarized
as defining an objective function comprising a set of con-
tinuous variables via a digital computer; defining a number
of integers to sample from the set of continuous variables via
the digital computer; defining a number of bits used per
integer and a cost matrix of neighboring integers via the
digital computer; generating a mapping function via the
digital computer, wherein the mapping function maps the set
of continuous variables to a set of discrete variables; gen-
erating an objective function comprising the set of discrete
variables via the digital computer; and solving the objective
function comprising the set of discrete variables via a
quantum processor.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

In the drawings, identical reference numbers identify
similar elements or acts. The sizes and relative positions of
elements in the drawings are not necessarily drawn to scale.
For example, the shapes of various elements and angles are
not drawn to scale, and some of these elements are arbi-
trarily enlarged and positioned to improve drawing legibil-
ity. Further, the particular shapes of the elements as drawn
are not intended to convey any information regarding the
actual shape of the particular elements, and have been solely
selected for ease of recognition in the drawings.

FIG. 1 is a schematic diagram of a portion of an exem-
plary superconducting quantum processor designed for AQC
(and/or quantum annealing) that may be used to implement
the present systems and methods.

FIG. 2 illustrates an exemplary digital computer including
a digital processor that may be used to perform classical
digital processing tasks described in the present systems and
methods.

FIG. 3 is a flow diagram showing a method of solving a
continuous variable objective function by producing a map-
ping function with discrete variables that maps the continu-
ous variables into discrete variables solvable by the quantum
hardware such that the cost of having neighboring integers
is minimized.

DETAILED DESCRIPTION

In the following description, some specific details are
included to provide a thorough understanding of various
disclosed embodiments. One skilled in the relevant art,
however, will recognize that embodiments may be practiced
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without one or more of these specific details, or with other
methods, components, materials, etc. In other instances,
well-known structures associated with quantum processors,
such as quantum devices, coupling devices, and control
systems including microprocessors, drive circuitry and non-
transitory computer- or processor-readable media such as
nonvolatile memory for instance read only memory (ROM),
electronically erasable programmable ROM (EEPROM) or
FLASH memory, etc., or volatile memory for instance static
or dynamic random access memory (ROM) have not been
shown or described in detail to avoid unnecessarily obscur-
ing descriptions of the embodiments of the present systems
and methods. Throughout this specification and the
appended claims, the words “eclement” and “elements” are
used to encompass, but are not limited to, all such structures,
systems and devices associated with quantum processors, as
well as their related programmable parameters.

Unless the context requires otherwise, throughout the
specification and claims which follow, the word “comprise”
and variations thereof, such as, “comprises” and “compris-
ing” are to be construed in an open, inclusive sense, that is
as “including, but not limited to.”

Reference throughout this specification to “one embodi-
ment,” or “an embodiment,” or “another embodiment”
means that a particular referent feature, structure, or char-
acteristic described in connection with the embodiment is
included in at least one embodiment. Thus, the appearances
of'the phrases “in one embodiment,” or “in an embodiment,”
or “another embodiment” in various places throughout this
specification are not necessarily all referring to the same
embodiment. Furthermore, the particular features, struc-
tures, or characteristics may be combined in any suitable
manner in one or more embodiments.

It should be noted that, as used in this specification and the
appended claims, the singular forms “a,” “an,” and “the”
include plural referents unless the content clearly dictates
otherwise. Thus, for example, reference to a problem-solv-
ing system including “a quantum processor” includes a
single quantum processor, or two or more quantum proces-
sors, including a grid or distributed network of multiple
quantum processors. It should also be noted that the term
“or” is generally employed in its sense including “and/or”
unless the content clearly dictates otherwise.

The headings provided herein are for convenience only
and do not interpret the scope or meaning of the embodi-
ments.

The various embodiments described herein provide sys-
tems and methods for solving computational problems via a
quantum processor. More specifically, the various embodi-
ments described herein provide systems and methods pro-
vide systems and methods for defining how to encode
problems for a quantum processor. Some examples of such
problems include an objective function with non-binary
variables. Examples of such problems include an objective
function with continuous variables. Some examples include
an objective function with integer variables.

A quantum processor typically comprises a number N of
qubits. The “state” of the quantum processor is defined by
the configuration of the respective states of all of the N
qubits. Since each qubit output is a binary variable (in
particular, at the end of a computation the state of each qubit
is in a binary), the state of the quantum processor may be
described by a bit string. Thus, each respective state of the
quantum processor corresponds to a respective (and unique)
bit string. A quantum processor typically operates by receiv-
ing a problem and returning a state, or bit string, that
corresponds to a solution to the problem. This bit string has
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a finite length, typically equal to N. Thus, there are 27
different configurations for this bit string, so the total num-
ber of possible outputs from (i.e., states of) the quantum
processor is 27

Programming a quantum processor to solve a particular
problem typically involves programming the quantum pro-
cessor with a particular problem formulation and/or con-
figuration of a number of programmable parameters. A
quantum processor may include a number of programmable
elements and/or parameters, and programming the quantum
processor with a particular problem formulation and/or
configuration of the number of programmable parameters
may involve assigning specific values to these program-
mable elements and/or parameters. Typically, the values
assigned to the programmable parameters are discrete (for
example, 0/1, or —1/+1). However, a problem to be solved
such as an objective function to be minimized may not
always have such discrete set of values. In these instances a
useful article is a computer readable mapping that converts
the problem input to a discrete form. For example, in
instances where the objective function comprises continuous
values, there needs to be a mapping that converts the
continuous variables into discrete form that allows the
quantum processor to solve the problem. When the objective
function comprises, or can be associated with integer values,
there needs to be a mapping that converts the continuous
variables into discrete form that allows the quantum pro-
cessor to solve the problem. The present systems and
methods provide, among other things, techniques for map-
ping continuous values of an objective function to integer
values. The present systems and methods provide, among
other things, techniques for mapping integer values of an
objective function to discrete values (e.g., binary strings also
called bit strings). The present systems and methods pro-
vide, among other things, techniques for using the mapping
and the previously described sampling approach to minimize
the objective function.

One of the challenges that one faces when minimizing an
objective function, F (X, X,, . . ., X,), for integer X;s using
a solver that can only handle binary variables is how to map
integer values to binary strings. The two contradicting
properties that makes a mapping favorable are: 1) the
number of bits required to map an integer to a binary string
and 2) the change in the integer values by flipping a bit for
an arbitrary state S. One can minimize the first property by
representing each integer with its base-2 form, which
requires log n bits. However, flipping more significant bits
changes the integer values more and in the case of flipping
the most significant bit, the change equals half the entire
range.

For example, for a given objective function F(w) where
we[0,3.1], w could be any number between 0 and 3.1 such
as 1.1, 2.34, etc. In the case of w being a continuous value
(e.g., a fraction), a user defines a finite set of integers that w
may represent. The set of w values may be defined by an
incremental set of numbers with a fixed increment A or the
increment may be random with no fixed A. For this example,
it is assumed that the set of w values have a fixed A of 0.1
such that a given w of function F(w) will have:

w~{0,0.1,02,03,...,29, 3, 3.1}.

Each of the indices representing the values of w are called
an “integer” (or in other words an “object”) of w. As such,
O=integer 1, O.1=integer 2, 3.1=integer 32. In order to
represent the 32 integers shown above in base-2 form at least
5 bits are needed (i.e., for a binary representation log,
(32)=5) so that integer 1 may be represented as 00001 and
integer 16 may be represented as 01000. This form of
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representation of continuous variables is called binary rep-
resentation which makes use of O(log k) bits.

Throughout this specification and the appended claims,
reference is often made to a “neighborhood of a sample”
and/or a “neighborhood of a state.” The “neighborhood” of
a sample (or state) is generally used to refer to a set of
additional samples (or states) that are close to or within a
vicinity of the sample (or state). For example, a sample that
corresponds to a state of a quantum processor may corre-
spond to a specific energy state of the quantum processor
and the “neighborhood” of the sample may include other
states of the quantum processor with respective energies that
are within a certain range of the sample. Similarly, a sample
that corresponds to a bit string may have a “neighborhood”
that includes all other bit strings within a certain Hamming
distance (i.e., within a certain number of bit flips) of the
sample. For example, a bit string having N bits may have a
neighborhood that includes all bit strings within a Hamming
distance of 0.5N, 0.25N;, 0.1N, 0.05N, etc. as appropriate for
the specific application. In other examples, a bit string may
have a neighborhood that includes all bit strings within an
absolute value of Hamming distance such as, 1, 2, 3, 5, 10,
etc. In the case of the minimization of an objective function,
the objective function may include a number of low-value
regions (i.e., minima or wells) corresponding to local
minima and a lowest-value region corresponding to a global
minimum. A well typically includes multiple low-value
states, with the minimum (i.e., the base of the well) corre-
sponding to the lowest-value state within the well. Thus, in
this case the “neighborhood” of a sample may include the
other samples within the same well (i.e., local or global
minimum) as the sample.

However, in the example give above, a single bit flip may
correspond to a completely different integer. For example,
00001 corresponds to integer 1 whereas flipping the second
bit from left of 00001 being 01001 corresponds to integer 17
which may be completely different from integer 1. There-
fore, in this case, the “neighborhood” of a sample may
include sample from different wells. This kind of represen-
tation (i.e., binary representation) while uses minimum
number of bits to represent a continuous variable function,
may not have a smooth objective function to map to the
quantum processor.

On the other hand, one can minimize the distance between
the integers corresponding to a binary string and its one flip
neighbor using the unary representation of integers at the
cost of allocating k bits per integer. In other words, a
mapping may be smoothed from bit strings mentioned above
to integers by using more bits than is strictly necessary. In
this way, one can tradeoff smoothness of the cost landscape
with the number of variables. For example, the same con-
tinuous variable objective function F(w) as shown above
may be represented a different base-2 representation, an
example unary representation. For example, such a unary
representation with 32 bits (i.e., on the order of O(k) bits)
such that a 32-bit string of all zeros represents integer 0, a
32-bit string of 31 zeros and 1 ones represents integer 1, a
32-bit string of 12 zeros and 20 ones represents integer 20
and so on. With this kind of representation (i.e., unary
representation), a bit flip at most introduce a 1 or remove a
1 which corresponds to a neighboring objects and as such the
“neighborhood” of a sample may include the other samples
within the same well, as opposed to binary representation of
the objects. Therefore, in unary representation of objects, the
objective function may be smoother than that of binary
representation. However, there is an upper limit to the
number of k-bits that may be used to represent an integer
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given the total number of integers. The upper limit is set by
the hardware’s available number of qubits that can be
programmed with the k-bits defined. In some examples, the
upper limit is proportional to the quotient from the division
of the number of qubits by the number of integers. For
example, a quantum processor comprising 500 available
qubits may allow up to 10 bits to be used to represent an
integer when the problem defined comprises 50 integers.

Therefore, the present systems and methods introduce an
optimization procedure with tunable trade-off between the
number of bits versus the smoothness of the landscape under
a bit flip.

Throughout this specification, the term “hardware” is
generally used to refer to a quantum processor. Thus, the
phrases “in hardware” and “by the hardware” and the like
generally refer to “via the quantum processor” and similar,
as the context reasonably dictates.

Throughout this specification, the term “bit flip” is gen-
erally used to refer to changing bit in a bit string either from
‘0’ to ‘1’ or ‘1’ to “0’. Depending on the mapping and the
cost defined, a single bit flip may induce a large cost or a
small cost which ultimately needs to be minimized.

In accordance with some embodiments of the present
systems and methods, a quantum processor may be designed
to perform quantum annealing and/or adiabatic quantum
computation. An evolution Hamiltonian is proportional to
the sum of a first term proportional to the problem Hamil-
tonian and a second term proportional to the disordering
Hamiltonian. As previously discussed, a typical evolution
may be represented by Equation 1:

Hyox AOH+BOHp M

where H, is the disordering Hamiltonian, H is the problem
Hamiltonian, H, is the evolution or instantaneous Hamilto-
nian, and A(t) and B(t) are examples of evolution coeffi-
cients which controls the rate of evolution. In general,
evolution coefficients assume values from 0 to 1. A common
disordering Hamiltonian is shown in Equation 2:

2
Hp=-

NS
M=

where N represents the number of qubits, o, is the Pauli
x-matrix for the i” qubit and A, is the single qubit tunnel
splitting induced in the i” qubit. Here, the o, terms are
examples of “off-diagonal” terms. A common problem Ham-
iltonian includes first component proportional to diagonal
single qubit terms and a second component proportional to
diagonal multi-qubit terms. The problem Hamiltonian, for
example, may be of the form:

o & N (3)
Hp o =3 Z h;o’f+Z Jyoias

where N represents the number of qubits, o is the Pauli
z-matrix for the i qubit, h, and I,  are dimensionless local
fields for the qubits and the couplings between qubits, and
€ is some characteristic energy scale for H,. Here, the 0,” and
0,70, terms are examples of “diagonal” terms. The former is
a single qubit term and the latter a two qubit term. Through-
out this specification, the terms “final Hamiltonian” and
“problem Hamiltonian” are used interchangeably. Hamilto-
nians such as H,, and H, in Equations 2 and 3, respectively,

10

15

20

25

30

35

40

45

50

55

60

65

12

may be physically realized in a variety of different ways. A
particular example is realized by an implementation of
superconducting qubits.

FIG. 1 is a schematic diagram of a portion of an exem-
plary superconducting quantum processor 100 designed for
quantum annealing (and/or adiabatic quantum computing)
that may be used to implement the present systems and
methods. The portion of superconducting quantum proces-
sor 100 shown in FIG. 1 includes two superconducting
qubits 101, and 102. Also shown is a tunable o, 0;” coupling
(diagonal coupling) via coupler 111 therebetween qubits 101
and 102 (i.e., providing pair-wise coupling or 2-local inter-
action). While the portion of quantum processor 100 shown
in FIG. 1 includes only two qubits 101, 102 and one coupler
111, those of skill in the art will appreciate that quantum
processor 100 may include any number of qubits and any
number of coupling devices coupling information therebe-
tween.

The portion of quantum processor 100 shown in FIG. 1
may be implemented to physically realize quantum anneal-
ing and/or adiabatic quantum computing. Quantum proces-
sor 100 includes a plurality of interfaces 121-125 that are
used to configure and control the state of quantum processor
100. Each of interfaces 121-125 may be realized by a
respective inductive coupling structure, as illustrated, as part
of'a programming subsystem and/or an evolution subsystem.
Such a programming subsystem and/or evolution subsystem
may be separate from quantum processor 100, or it may be
included locally (i.e., on-chip with quantum processor 100)
as described in, for example, U.S. Pat. Nos. 7,876,248; and
8,035,540.

In the operation of quantum processor 100, interfaces 121
and 124 may each be used to couple a flux signal into a
respective compound Josephson junction 131, 132 of qubits
101 and 102, thereby realizing the A, terms in the system
Hamiltonian. This coupling provides the off-diagonal o*
terms of the Hamiltonian described by Equation 2 and these
flux signals are examples of “disordering signals.” Similarly,
interfaces 122 and 123 may each be used to couple a flux
signal into a respective qubit loop of qubits 101 and 102,
thereby realizing the h, terms in the system Hamiltonian.
This coupling provides the diagonal o° terms of Equation 3.
Furthermore, interface 125 may be used to couple a flux
signal into coupler 111, thereby realizing the J,; term(s) in the
system Hamiltonian. This coupling provides the diagonal
0,0, terms of Equation 3. In FIG. 1, the contribution of
each of interfaces 121-125 to the system Hamiltonian is
indicated in boxes 121a-125a, respectively. Thus, through-
out this specification and the appended claims, the terms
“problem formulation” and “configuration of a number of
programmable parameters” are used to refer to, for example,
a specific assignment of h, and I; terms in the system
Hamiltonian of a superconducting quantum processor via,
for example, interfaces 121-125.

Throughout this specification and the appended claims,
the term “quantum processor” is used to generally describe
a collection of physical qubits (e.g., qubits 101 and 102) and
couplers (e.g., coupler 111). The physical qubits 101 and 102
and the couplers 111 are referred to as the “programmable
elements” of the quantum processor 100 and their corre-
sponding parameters (e.g., the qubit h, values and the cou-
pler J,; values) are referred to as the “programmable param-
eters” of the quantum processor. In the context of a quantum
processor, the term “programming subsystem” is used to
generally describe the interfaces (e.g., “programming inter-
faces” 122, 123, and 125) used to apply the programmable
parameters (e.g., the h; and I, terms) to the programmable
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elements of the quantum processor 100 and other associated
control circuitry and/or instructions. As previously
described, the programming interfaces of the programming
subsystem may communicate with other subsystems which
may be separate from the quantum processor or may be
included locally on the processor. As described in more
detail later, the programming subsystem may be configured
to receive programming instructions in a machine language
of the quantum processor and execute the programming
instructions to program the programmable elements in
accordance with the programming instructions. Similarly, in
the context of a quantum processor, the term “evolution
subsystem” is used to generally describe the interfaces (e.g.,
“evolution interfaces” 121 and 124) used to evolve the
programmable elements of the quantum processor 100 and
other associated control circuitry and/or instructions. For
example, the evolution subsystem may include annealing
signal lines and their corresponding interfaces (121, 124) to
the qubits (101, 102).

Quantum processor 100 also includes readout devices 141
and 142, where readout device 141 is configured to read out
the state of qubit 101 and readout device 142 is configured
to read out the state of qubit 102. In the embodiment shown
in FIG. 1, each of readout devices 141 and 142 comprises a
respective DC-SQUID that is configured to inductively
couple to the corresponding qubit (qubits 101 and 102,
respectively). In the context of quantum processor 100, the
term “readout subsystem” is used to generally describe the
readout devices 141, 142 used to read out the final states of
the qubits (e.g., qubits 101 and 102) in the quantum pro-
cessor to produce a bit string. The readout subsystem may
also include other elements, such as routing circuitry (e.g.,
latching elements, a shift register, or a multiplexer circuit)
and/or may be arranged in alternative configurations (e.g.,
an XY-addressable array, an XYZ-addressable array, etc.).
Qubit readout may also be performed using alternative
circuits, such as that described in PCT Patent Publication
W02012064974.

While FIG. 1 illustrates only two physical qubits 101,
102, one coupler 111, and two readout devices 141, 142, a
quantum processor (e.g., processor 100) may employ any
number of qubits, couplers, and/or readout devices, includ-
ing a larger number (e.g., hundreds, thousands or more) of
qubits, couplers and/or readout devices. The application of
the teachings herein to processors with a different (e.g.,
larger) number of computational components should be
readily apparent to those of ordinary skill in the art.

Examples of superconducting qubits include supercon-
ducting flux qubits, superconducting charge qubits, and the
like. In flux qubit the Josephson energy dominates or is equal
to the charging energy. In a charge qubit it is the reverse.
Examples of flux qubits that may be used include rf-
SQUIDs, which include a superconducting loop interrupted
by one Josephson junction, persistent current qubits, which
include a superconducting loop interrupted by three Joseph-
son junctions, and the like. See, examples of rf-SQUID
qubits in Bocko, et al., 1997 IEEE Trans. on Appl. Super-
cond. 7, 3638, Friedman, et al., 2000, Nature 406, 43; and
Harris, et al., 2010, Phys. Rev. B 81, 134510; or persistent
current qubits, Mooij et al., 1999, Science 285, 1036; and
Orlando et al., 1999, Phys. Rev. B 60, 15398. In addition,
hybrid charge-phase qubits, where the energies are equal,
may also be used. Further details of superconducting qubits
may be found in Makhlin, et al., 2001, Rev. Mod. Phys. 73,
357, Devoret et al, 2004, arXiv:cond-mat/0411174;
Zagoskin and Blais, 2007, Physics in Canada 63, 215;
Clarke and Wilhelm, 2008, Nature 453, 1031; Martinis,
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2009, Quantum Inf. Process. 8, 81; and Devoret and Schoe-
lkopf, 2013, Science 339, 1169. In some embodiments, the
qubit is controlled by on chip circuitry. Examples of on-chip
control circuitry can be found in U.S. Pat. Nos. 7,876,248;
7,843,209; 8,018,244, 8,098,179; 8,169,231; and US Patent
Publication 2012-0094838.

FIG. 2 illustrates an exemplary digital computer 200
including a digital processor 206 that may be used to
perform classical digital processing tasks described in the
present systems and methods. Those skilled in the relevant
art will appreciate that the present systems and methods can
be practiced with other digital computer configurations,
including hand-held devices, multiprocessor systems,
microprocessor-based or programmable consumer electron-
ics, personal computers (“PCs”), network PCs, mini-com-
puters, mainframe computers, and the like. The present
systems and methods can also be practiced in distributed
computing environments, where tasks or modules are per-
formed by remote processing devices, which are linked
through a communications network. In a distributed com-
puting environment, program modules may be located in
both local and remote memory storage devices.

Digital computer 200 may include at least one processing
unit (i.e., digital processor 206), at least one system memory
208, and at least one system bus 210 that couples various
system components, including system memory 208 to digital
processor 206. Digital computer 200 will at times be referred
to in the singular herein, but this is not intended to limit the
application to a single digital computer 200. For example,
there may be more than one digital computer 200 or other
classical computing device involved throughout the present
systems and methods.

Digital processor 206 may be any logic processing unit,
such as one or more central processing units (“CPUs”),
digital signal processors (“DSPs”), application-specific inte-
grated circuits (“ASICs”), etc. Unless described otherwise,
the construction and operation of the various blocks shown
in FIG. 2 are of conventional design. As a result, such blocks
need not be described in further detail herein, as they will be
understood by those skilled in the relevant art.

System bus 210 can employ any known bus structures or
architectures, including a memory bus with a memory
controller, a peripheral bus, and a local bus. System memory
208 may include non-volatile memory such as read-only
memory (“ROM”) and volatile memory such as random
access memory (“RAM?”) (not shown). A basic input/output
system (“BIOS”) 212, which can form part of the ROM,
contains basic routines that help transfer information
between elements within digital computer 200, such as
during startup.

Digital computer 200 may also include other non-volatile
memory 214. Non-volatile memory 214 may take a variety
of forms, including: a hard disk drive for reading from and
writing to a hard disk, an optical disk drive for reading from
and writing to removable optical disks, and/or a magnetic
disk drive for reading from and writing to magnetic disks.
The optical disk can be a CD-ROM or DVD, while the
magnetic disk can be a magnetic floppy disk or diskette.
Non-volatile memory 214 may communicate with digital
processor 206 via system bus 210 and may include appro-
priate interfaces or controllers 216 coupled between non-
volatile memory 214 and system bus 210. Non-volatile
memory 214 may serve as long-term storage for processor-
readable or computer-readable instructions, data structures,
program modules and other data for digital computer 200.
Although digital computer 200 has been described as
employing hard disks, optical disks and/or magnetic disks,
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those skilled in the relevant art will appreciate that other
types of non-volatile computer-readable media may be
employed, such a magnetic cassettes, flash memory cards,
Bernoulli cartridges, Flash, ROMs, smart cards, etc.

Various sets of processor-readable instructions, called
program modules, application programs and/or data can be
stored in system memory 208. For example, system memory
208 may store an operating system 218, end user application
interfaces 220 and server applications 222. In accordance
with the present systems and methods, system memory 208
may store at set of modules 230 operable to interact with a
quantum processor (not shown in FIG. 2).

System memory 208 may also include one or more
networking applications 250, for example, a Web server
application and/or Web client or browser application for
permitting digital computer 200 to exchange data with
sources via the Internet, corporate Intranets, or other net-
works, as well as with other server applications executing on
server computers. Networking application 250 in the
depicted embodiment may be markup language based, such
as hypertext markup language (“HTML”), extensible hyper-
text markup language (“XHTML”), extensible markup lan-
guage (“XML”) or wireless markup language (“WML”),
and may operate with markup languages that use syntacti-
cally delimited characters added to the data of a document
to represent the structure of the document. A number of Web
server applications and Web client or browser applications
are commercially available, such as those available from
Mozilla and Microsoft.

While shown in FIG. 2 as being stored in system memory
208, operating system 218 and various applications/modules
220, 222, 230, 250 and other data can also be stored in
nonvolatile memory 214.

Digital computer 200 can operate in a networking envi-
ronment using logical connections to at least one client
computer system 236 and at least one database system 270.
These logical connections may be formed using any means
of digital communication, for example, through a network
238, such as a local area network (“LAN”) or a wide area
network (“WAN™) including, for example, the Internet. The
networking environment may include wired or wireless
enterprise-wide computer networks, intranets, extranets,
and/or the Internet. Other embodiments may include other
types of communication networks such as telecommunica-
tions networks, cellular networks, paging networks, and
other mobile networks. The information sent or received via
the logical connections may or may not be encrypted. When
used in a LAN networking environment, digital computer
200 may be connected to the LAN through an adapter or
network interface card (“NIC”) 240 (communicatively
linked to system bus 210). When used in a WAN networking
environment, digital computer 200 may include an interface
and modem (not shown), or a device such as NIC 240, for
establishing communications over the WAN. Non-net-
worked communications may additionally, or alternatively
be employed.

In a networked environment, program modules, applica-
tion programs, data, or portions thereof can be stored outside
of digital computer 200. Those skilled in the relevant art will
recognize that the logical connections shown in FIG. 2 are
only some examples of establishing communications
between computers, and other connections may also be used.

While digital computer 200 may generally operate auto-
matically, an end user application interface 220 may also be
provided such that an operator can interact with digital
computer 200 through different user interfaces 248, includ-
ing output devices, such as a monitor 242, and input devices,
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such as a keyboard 244 and a pointing device (e.g., mouse
246). Monitor 242 may be coupled to system bus 210 via a
video interface, such as a video adapter (not shown). Digital
computer 200 can also include other output devices, such as
speakers, printers, etc. Other input devices can also be used,
including a microphone, joystick, scanner, etc. These input
devices may be coupled to digital processor 206 via a serial
port interface that couples to system bus 210, a parallel port,
a game port, a wireless interface, a universal serial bus
(“USB”) interface, or via other interfaces.

NIC 240 may include appropriate hardware and/or soft-
ware for interfacing with the elements of a quantum pro-
cessor (not shown). In other embodiments, different hard-
ware may be used to facilitate communications between
digital computer 200 and a quantum processor. For example,
digital computer 200 may communicate with a quantum
processor via a direct electrical connection (e.g., via Uni-
versal Serial Bus, Firewire, or the like), a wireless connec-
tion (e.g., via a Wi-Fi® network), or an Internet connection.

Client computer system 236 may comprise any